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LETTER TO THE EDITOR 

Scaling behaviour at the onset of mutual entrainment in a 
population of interacting oscillators 

Hiroaki Daido 
Department of Physics, Kyushu Institute of Technology, Tobata, Kitakyushu 804, Japan 

Received 24 March 1987, in final form 21 April 1987 

Abstract. Scaling behaviour of an order parameter and its fluctuations is numerically 
investigated at the onset of macroscopic mutual entrainment in a population of interacting 
self-oscillators. In particular, evidence is presented for the power law divergence of the 
fluctuations with exponents near Q. Finite-size scaling forms are also proposed and verified. 

Populations of interacting self-oscillators with distributed natural frequencies can 
exhibit remarkable transitions from a disordered state to an ordered one as the strength 
of interactions is varied [ l ,  21 (see also references in [3,4]), namely, as the strength 
exceeds a certain threshold, a macroscopic number of elements begin to be mutually 
entrained with a common frequency. A number is called macroscopic if its magnitude 
is comparable to the population size N which is assumed to be very large. Such a 
phenomenon is quite analogous to second-order phase transitions in equilibrium 
systems [ 5 ]  so that it provides us with a new and interesting subject in the field of 
critical phenomena. The onset of mutual entrainment ( M E )  in large assemblies of 
oscillators may also be of significance in a variety of scientific disciplines such as 
biology [ l ]  as well as in physics. 

Although phase transitions in populations of oscillators have been studied pre- 
viously using continuous-time models, i.e. differential equations, the author has recently 
proposed a class of discrete-time models and has investigated the onset of M E  in a 
particular example as follows [3,4]: 

for 1 sjs  N which is a discrete-time version of a model used by Kuramoto [2,6-81, 
i.e. 

In these models, 0"' and R, are a phase and a natural frequency of the j t h  oscillator, 
respectively. (To be exact, R, is a natural winding number in the model (l).) The 
latter is supposed to be distributed over the population with a density f (R) .  The 
parameter E specifies the strength of interactions. For the model (2) it is known 
analytically that in the limit N +. 00 an order parameter K equals zero for E s E,  while 
it is positive for E > E ,  where K is the absolute value of lim,+= N-'Z:I exp 2ri 'O' ' ' ( i '= 
(-1)1'2) and the threshold E,  coincides with the onset of macroscopic entrainment 
[2, 6-81. For example, if 

(3) f ( R )  = ( r / r ) [ ( R  -m2+ y21-l 
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E ,  equals 47ry at which a M E  sets in with the common frequency 6. A similar behaviour 
was found numerically in the discrete-time model ( 1 )  as well [ 3 , 4 ] .  (We remark that 
discrete-time models such as ( 1 )  were introduced to investigate the dynamics of 
populations of quasiperiodic oscillators [ 3 ] ,  whereas continuous-time models, including 
the one in ( 2 ) ,  are for populations of limit-cycle oscillators (see [ 1 , 2 ]  for the expected 
scientific significance of the latter models). As for the former type of models, we refer 
the reader to an  earlier paper [ 3 ]  where detailed arguments are given on why investigat- 
ing them is important and  interesting.) 

A most remarkable discovery in the earlier work [ 3 ] ,  however, is the anomalous 
enhancement of persistent fluctuations of the order parameter in the neighbourhood 
of E , .  In  order to explain this, let us recall details of the previous computations. The 
natural winding numbers were chosen as 

RJ = 6+ y tan[(j7r/ N )  - ( N  + l ) 7 r / 2 N ]  l s j s N  ( 4 )  
whose distribution is given by ( 3 )  in the limit N + W. For convenience, computations 
were carried out for $j('= 8"'- , nR * ( 1  s j s  N )  with a particular initial condition: 
$2' = 0 ( 1  s j  s N ) .  Evolution equations of $' 'I  may then be simplified for even N as 
follows: 

1 s j s - N  ( 5 )  $ ( J I  - - $LJ'+A, - ( ~ X , / 2 7 r )  sin 27r$LJ' 

where AJ = sZJ -fi and X ,  = N - ' X Z ,  cos 27r+j(), because Y,, = N - l X E I  sin 27r$',"=O 
for all n 3 0 .  Results based on (5) with N = 100 and  y = indicated the presence 
of persistent fluctuations in X , .  Therefore, two quantities were computed, i.e. ( X )  and 
U =  ( ( X 2 ) - ( X ) z ) " 2 ,  where the brackets ( ) stand for a long time average. As the 
parameter E was varied, ( X ) ,  which may be identified with K ,  was found to behave 
qualitatively in the same way that K does in model (2). On the other hand, U behaved 
as if it were divergent at  the threshold. This suggests divergence of 6 at E = E , ,  where 
6 is defined by - 

6 =  N-CS lim J N ~ .  ( 6 )  
- 

(Note that by definition, u s  1 < 00.) The factor \ l N  comes from a naive expectation 
based on the central limit theorem. A numerical check on this will be done later. 
Although comparison with the numerical results was not made, a preliminary prediction 
was presented as follows: 

near the threshold, where a+ = a -  =; [ 3 ] .  
Quite recently, however, Nishikawa and  Kuramoto [ 9 ]  argued analytically that 6 

should remain finite even at the threshold in the case of model ( 2 ) .  Since the width 
of the distribution of a,, y in our computations happened to be fairly small, they 
claimed that the numerical results were essentially for model (2)  and hence that the 
divergence of 6 such as ( 7 )  would not take place. The main purpose of the present 
letter is to numerically check in detail the critical behaviour of 6 in model ( 1 )  for 
larger N than taken previously. It was found that 6 still tends to diverge as (7) ,  but 
with the exponents near d .  We also attempt to numerically establish a scaling behaviour 
of K .  Finite-size scaling forms of K and U are also proposed on the basis of a heuristic 
argument and  are verified numerically. In the following, the details of computations 
are the same as described above, except for N. ( In  particular, y is fixed at The 
iteration number for computing K and U is typically 219 = 524 288 throughout this 
letter for which convergence of both quantities turned out to be fairly good in general. 

6a / E  - E s E ,  ( 7 )  
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Let us first focus on the scaling behaviour of K = ( X )  at the onset of M E  which is 
expected theoretically as follows [2-4,7-81: 

K ~ ( E - E , ) ” ~  (8) 

where E ,  = 2(eZry - 1) [3,4]. We wish to establish the exponent 4 in (8) since in previous 
numerical investigations, including those for model (2) [2,3,7,8], the behaviour of K 
was studied only in a rather global range of a control parameter than locally enough 
to confirm (8). Our result of a K against E plot near the threshold is displayed in 
figure l ( a )  for N = 100, 400, 800 and 1600. 

It is evident that the data for different N almost equal one another far beyond the 
threshold, revealing good convergence of K for increasing N. On the other hand, as 
the threshold is approached, scattering of the data becomes more and more conspicuous. 
This remarkable finite-size effect at the onset of ME will be discussed in detail later. 

L 
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Figure 1. ( a )  K against E near E, for N = 100 ( x ) ,  400 (U), 800 ( A )  and 1600(+). ( b )  The 
power law behaviour of K against A E  = ( E  - E , ) / ( [  - E J ,  where E, = 0.012 593 and F* = 
0.0136. The data are for N = 1600. The straight line is drawn by the least squares method 
and its slope is 0.502. The curve in ( a )  corresponds to the straight line in ( b ) .  
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Concerning the location of the threshold, we made an extrapolation based on (8) using 
two of the data points for N = 1600 to obtain E,  = 0.012 593 which is in reasonable 
agreement with 0.012 6059. . . due to the formula for E , .  (For y = E,  of model 
(2) is 0.012 5663 . . . which is slightly smaller than that of model ( l) .)  Figure l ( b )  
shows a log-log plot of the data for N = 1600 whose slope is 0.502k0.003, being in 
excellent agreement with the theory. This result seems to suggest that, in the regime 
studied above, N = 1600 is large enough to extract critical scaling properties in the 
limit N + 00. 

We now proceed to see the behaviour of fluctuations. Let us first confirm that U 

is O( N-"2) .  Figure 2 shows log, U against log,( N /  100) plots for E = 0.01 16( < E,)  and 
E = 0.0136(> E ~ ) .  The power law behaviour of U is clear. The slope of the data is 
-0.516*0.002 for the former value of E and -0.521 k0.002 for the latter. Both of 
these slopes agree reasonably well witth f though they are somewhat larger. It has 
also been confirmed that the distribution of X,, is fitted well by a Gaussian law with 
mean ( X )  and variance u2 in accord with the central limit theorem [4]. We thus arrive 
at a point where the main subject of this letter is touched upon. A plot of mu against 
E around E ,  is presented in figure 3 for N =400, 800 and 1600. This plot apparently 
suggests a divergence of U at E = E , .  As a detailed check, log-log plots of mu against 
I E  - E,( for N = 1600 are displayed in figure 4 where E , =  0.012 593 is used. (Of the 
data in figure 3, some whose E is too close to E ,  are not included since the finite-size 
effect is expected to be serious for them.) The plots provide evidence for the power 
law divergence of 6 as expressed in ( 7 )  but the exponents are found to be drastically 
different from f, as follows: a- = 0.126* 0.009 and a+ = 0.123 * 0.003, both of which 
are fairly close to t .  In the same way, the exponents for N=800 were found to be 
a- = 0.120*0.004 and a ,  = 0.132 * 0.005 ( E ,  = 0.012 606 obtained by extrapolation was 
used). These results indicate that the increase in N from 800 to 1600 yields no serious 
change in the exponents. Moreover, the results (especially for N = 1600) appear to 
suggest a+ = a - .  Thus a summary may be given in the following way: our results 
suggest that 6 behaves as (7)  on both sides of E ,  with a common exponent near i, at 

- 3  c- 

-6 6 
0 2 4 

l O g 2 N '  

Figure 2. The power law behaviour of U against N (  N'  = N /  100) for E = 0.01 16 (< E ~ )  and 
for E = 0.0136 (> ec). For their slopes see the text. 
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Figure. 3. The critical behaviour of U multiplied by J N .  The data are for N = 400 (U), 
800 ( A )  and 1600 (+). The threshold marked under the abscissa is the theoretical one: 
0.012 6059.. . . 

least in the investigated regime of E. (We remark that the minimum of I (  E - E , ) / E , /  for 
the data used in figure 4 is 0.004 for E < E ,  and 0.006 for E > E , . )  

Now let us look back at the behaviour of K displayed in figure l (a) .  The finite-size 
effect on the critical scaling of K may be understood as follows. It is easy to see that 
in the limit y+O (i.e. when model (1) is well approximated by model ( 2 ) )  oscillators 
entrained with the 'frequency' fi are those which satisfy 

IAjI < E K / ( ~ T )  (9) 

when E > E,. Furthermore, note that in a finite-size system, the mean distance between 
neighbouring Rj is O ( N - ' ) .  Therefore, if K decreases to O ( N - ' )  as E approaches E ,  

from above, there will be no oscillator whose R, meets the inequality (9) and  for E 

closer to E,  then K should vanish. In other words, in finite-size systems, K may be 
expected to be discontinuous at  the onset of ME. This picture seems consistent with 
the following numerical observation, i.e. the data in figure l ( a )  which deviate from 
the scaling form are actually transient with the tendency of diminishing towards zero, 
It may be a delicate problem, however, because of the presence of fluctuations, whether 
K is rigorously discontinuous or not. The above argument may not be sufficient to 
establish the discontinuity of K ,  but what is most important is that it allows us to 
estimate E ,  E , - ( N ) ,  for which the finite-size effect begins to work: 

E,-( N )  - E,  = O( N - 2 )  (10) 
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Figure 4. The power law behaviour of V’NU against AE which is ( E ~ -  E ) / ( E ~ -  i) for the 
upper ( E  < E ~ )  and ( E  - E , ) / ( :  - E , )  for the lower ( E  > E,)  plots where E ,  = 0.012 593, 
i = 0.01 16 and E^ = 0.0136. Slopes of the data are given in the text. 

where (8) has been used. Equation (10) suggests a finite-size scaling form of K as 

K = N - ’ @ (  N’?) (11) 

where ?= E - E ,  and @(x) is a function such that @ ( x ) a x ” *  for x >> 1 (see [ lo]  for 
the finite-size scaling analysis of equilibrium phase transitions). Numerical evidence 
for (1 1) is given in figure 5 (  a )  where the theoretical value is used for E , .  We may also 
expect a finite-size scaling of U as 

U = NPV( N 2 i )  (12) 

where p = (4a+ - 1)/2 and V ( x )  should satisfy Vr(x)ax-”+ when x >> 1. The best fit 
value of a ,  turned out to be 0.1 1 for the data of N = 800, 1200 and 1600 and the result 
of that plot is shown in figure 5 (  b )  supporting the scaling law of (12). (Since the above 
value of a ,  is affected by the data for smaller N, it would be less reliable than that 
found in figure 4 for N = 1600.) This result provides us with further evidence for the 
divergence of 6 (for E > E ~ ) .  (We remark that in figure 5 the plots are presented for 
such a range of N 2 ?  that only the asymptotic behaviour of @(x) and V ( x )  for x >> 1 
can be seen. This is because, owing to slow convergence, only some data were available 
in the remaining range closer to E , .  It should also be mentioned that scalings of the 
data were found to be poor in the subcritical regime. This fact remains to be explained.) 

Finally, note that the definition of U used above is applicable only to a class of 
initial conditions for which Y,, = 0 for all n 2 0. Generally, it should be defined as 

U = (lZ - ( Z ) y  (13)  

where 2, X ,  + i’ Y,  . Needless to say, it is important to confirm that (+ is independent 
of the choice of an initial condition. This was done for N = 100 and E = 0.006, 0.008, 
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Figure 5. ( a )  Finite-size scaling of K (equation (1 1 ) )  and of D (equation (12) with a = 0.1 1). 
In the abscissa, ;is E - E , ,  where E ,  is the theoretical value. The data are for N = 800 ( A ) ,  
1200 (U) and 1600(+). The straight line in ( a )  shows the slope f and in ( b )  the slope -0.11. 

0.015, 0.018 with a random initial condition and another one: $2’ = 0.2 (1 S j  S N / 2 ) ,  
0.7 ( N / 2  < j s N ) .  (+ thus computed using (13) ,  as well as K = / (Z) l ,  agreed with the 
results for the case of $2’ = 0 (1  S j S N )  obtained using (5). 

In summary we have found numerical results suggesting that 6, a measure of 
fluctuations related to the order parameter K ,  diverges at the threshold of M E  as (7) 
with the same exponents close to Q on both sides of the threshold, being in contradiction 
with the recent claim by Nishikawa and Kuramoto [9] as well as the author’s preliminary 
prediction [3]. The critical behaviour of 6 is very interesting because it is not of the 
mean-field type despite the fact that model (1) possesses a clear mean-field character. 
( In  fact, such a character is reflected by the behaviour of K (8).) Of course, we still 
have to be careful since a crossover may happen even in the infinite system in a deeper 
critical regime than investigatedAbove. (Note that such a crossover should obviously 
exist in any finite system since J N U  is bounded by J N . )  Further investigations would 
be necessary to check this point and, in addition, to see how universal the exponents 
are. We have also examined the scaling of K to find excellent agreement with the 
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theory. Moreover, finite-size scaling forms of K and U have been proposed on the 
basis of (10) and verified on the supercritical side. As to U, such a scaling may be 
regarded as supporting the behaviour of 6 as ( 7 )  for E > E , .  To the author's knowledge, 
the present letter is the first to apply the finite-size scaling analysis [ 101 to the population 
dynamics of interacting oscillators. The utility of such an analysis should be noted. 
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